Indeed, our everyday world presents intellectual challenges just as daunting as those of the cosmos and the quantum, and that is where 99 per cent of scientists focus their efforts. Even the smallest insect, with its intricate structure, is far more complex than either an atom or a star.

We know too little about how life began on Earth to lay confident odds. It may have involved a fluke so rare that it happened only once in the entire galaxy. On the other hand, it may have been almost inevitable, given the right environment.

The first arrival of earthly life on another celestial body ranks as an epochal event not only for our generation, but in the history of our planet. Neil Armstrong was at the cusp of the Apollo programme. This was a collective technological effort of epic scale, but his is the one name sure to be remembered centuries hence.

There are at least as many galaxies in our observable universe as there are stars in our galaxy.

Everything, however complicated - breaking waves, migrating birds, and tropical forests - is made of atoms and obeys the equations of quantum physics. But even if those equations could be solved, they wouldn't offer the enlightenment that scientists seek. Each science has its own autonomous concepts and laws.

The scientific issues that engage people most are the truly fundamental ones: is the universe infinite? Is life just a sideshow in the cosmos? What happened before the Big Bang? Everyone is flummoxed by such questions, so there is, in a sense, no gulf between experts and the rest.

Crucial to science education is hands-on involvement: showing, not just telling; real experiments and field trips and not just 'virtual reality.'

Some of the 'aha' insights that scientists strive for may have to await the emergence of post-human intellects.

When scientists are asked what they are working on, their response is seldom 'Finding the origin of the universe' or 'Seeking to cure cancer.' Usually, they will claim to be tackling a very specific problem - a small piece of the jigsaw that builds up the big picture.

As regards my own 'philosophy,' I continue to be inspired by the music, liturgy and architectural tradition of the Anglican Church in which I was brought up. No one can fail to be uplifted by great cathedrals - such as that at Ely, near my home in Cambridge.

In future, children won't perceive the stars as mere twinkling points of light: they'll learn that each is a 'Sun', orbited by planets fully as interesting as those in our Solar system.

It is foolish to claim, as some do, that emigration into space offers a long-term escape from Earth's problems. Nowhere in our solar system offers an environment even as clement as the Antarctic or the top of Everest.

I hope that by 2050 the entire solar system will have been explored and mapped by flotillas of tiny robotic craft.

A monkey is unaware that atoms exist. Likewise, our brainpower may not stretch to the deepest aspects of reality. The bedrock nature of space and time, and the structure of our entire universe, may remain 'open frontiers' beyond human grasp.

There's now, for the first time, a huge gulf between the artefacts of our everyday life and what even a single expert, let alone the average child, can comprehend. The gadgets that now pervade young people's lives, iPhones and suchlike, are baffling 'black boxes' - pure magic to most people.

The Blair government perhaps ranks as the best the U.K. has had for 50 years. It cannot match the scale of Attlee's reforms, but has a fine record of constitutional reform and economic competence. In my own areas - science and innovation - there have been well-judged and effective changes.

Darwin and his successors taught us how our biosphere evolved, and thereby transformed our conception of humanity's place in nature. In the twenty-first century, space scientists are setting Darwin in a grander cosmic context - probing the origins of Earth, stars, atoms and the universe itself.

Ironically, it is only when disaster strikes that the shuttle makes the headlines. Its routine flights attracted less media interest than unmanned probes to the planets or the images from the Hubble Telescope. The fate of Columbia (like that of Challenger in 1986) reminded us that space is still a hazardous environment.

The scientific community should work as hard as possible to address major issues that affect our everyday lives such as climate change, infectious diseases and counterterrorism; in particular, 'clean energy' research deserves far higher priority. And science and technology are the prime routes to tackling these issues.

Not even the most secular among us can fail to be uplifted by Christianity's architectural legacy - the great cathedrals. These immense and glorious buildings were erected in an era of constricted horizons, both in time and in space.

Advances in technology - hugely beneficial though they are - render us vulnerable in new ways. For instance, our interconnected world depends on elaborate networks: electric power grids, air traffic control, international finance, just-in-time delivery, and so forth.

The practical case for manned spacef light gets ever-weaker with each advance in robots and miniaturisation - indeed, as a scientist or practical man, I see little purpose in sending people into space at all. But as a human being, I'm an enthusiast for manned missions.

In our interconnected world, novel technology could empower just one fanatic, or some weirdo with a mindset of those who now design computer viruses, to trigger some kind of disaster. Indeed, catastrophe could arise simply from technical misadventure - error rather than terror.

Manufacturing doesn't just mean building cars and metal-bashing; it includes making pharmaceuticals and hi-tech electronics. A crucial part of the process is the research and development that allows better and greener products to come to market. Britain has traditionally had a strong science and engineering base.